Sex differences in murine sternohyoid muscle tolerance of acute severe hypoxic stress.

نویسندگان

  • P Lewis
  • K D O'Halloran
چکیده

Given that sex differences inherent to muscle might at least contribute to male risk for obstructive sleep apnoea syndrome (OSAS), our objective was to test the hypothesis that male sternohyoid muscle exhibits greater susceptibility to severe hypoxic stress compared with female muscle. Adult male and female C57Bl6/J mouse sternohyoid isometric and isotonic functional properties were examined ex vivo at 35 °C in tissue baths under control and severe hypoxic conditions. Hypoxia was detrimental to peak force (Fmax), work (Wmax) and power (Pmax), but not shortening velocity (Vmax). Two-way analysis of variance revealed a significant sex x gas interaction for Fmax (p<0.05), revealing inferior hypoxic tolerance in male sternohyoid muscle. However, increases in male shortening velocity in severe hypoxia preserved power-generating capacity which was equivalent to values determined in female muscle. Fmax decline in hypoxic female sternohyoid was considerably less than in male muscle, illustrating an inherent tolerance of force-generating capacity mechanisms to hypoxic stress in female airway dilator muscle. We speculate that this could confer a distinct advantage in vivo in terms of the defense of upper airway caliber.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional properties of an upper airway dilator muscle in aged obese male rats.

BACKGROUND Age, obesity and male sex are risk factors for the development of obstructive sleep apnoea syndrome. OBJECTIVE We examined structural and functional properties of the sternohyoid muscle in young lean and aged obese male rats. We hypothesized that the aged muscle would be vulnerable to oxidative stress (hypoxia). METHODS Isometric contractile and endurance properties of the sterno...

متن کامل

Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood

Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, ...

متن کامل

Upper airway dilator muscle weakness following intermittent and sustained hypoxia in the rat: effects of a superoxide scavenger.

Obstructive sleep apnoea syndrome (OSAS) is a common disorder associated with upper airway muscle dysfunction. Agents that improve respiratory muscle performance may have considerable therapeutic value. We examined the effects of acute exposure to sustained and intermittent hypoxia on rat pharyngeal dilator muscle function. Additionally, we sought to test the efficacy of antioxidant treatment i...

متن کامل

PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors

Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...

متن کامل

Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress

Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological research

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2016